Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome Analysis Provides Novel Insights into the Capacity of the Ectomycorrhizal Fungus Amanita pantherina To Weather K-Containing Feldspar and Apatite.

Identifieur interne : 000053 ( Main/Exploration ); précédent : 000052; suivant : 000054

Transcriptome Analysis Provides Novel Insights into the Capacity of the Ectomycorrhizal Fungus Amanita pantherina To Weather K-Containing Feldspar and Apatite.

Auteurs : Qibiao Sun [République populaire de Chine] ; Ziyu Fu [République populaire de Chine] ; Roger Finlay [Suède] ; Bin Lian [Oman]

Source :

RBID : pubmed:31126945

Descripteurs français

English descriptors

Abstract

Ectomycorrhizal (ECM) fungi, symbiotically associated with woody plants, markedly improve the uptake of mineral nutrients such as potassium (K) and phosphorus (P) by their host trees. Although it is well known that ECM fungi can obtain K and P from soil minerals through biological weathering, the mechanisms regulating this process are still poorly understood at the molecular level. Here, we investigated the transcriptional regulation of the ECM fungus Amanita pantherina in weathering K-containing feldspar and apatite using transcriptome sequencing (RNA-seq) and validated these results for differentially expressed genes using real-time quantitative PCR. The results showed that A. pantherina was able to improve relevant metabolic processes, such as promoting the biosynthesis of unsaturated fatty acids and steroids in the weathering of K-containing feldspar and apatite. The expression of genes encoding ion transporters was markedly enhanced during exposure to solid K-containing feldspar and apatite, and transcripts of the high-affinity K transporter ApHAK1, belonging to the HAK family, were significantly upregulated. The results also demonstrated that there was no upregulation of organic acid biosynthesis, reflecting the weak weathering capacity of the A. pantherina isolate used in this study, especially its inability to utilize P in apatite. Our findings suggest that under natural conditions in forests, some ECM fungi with low weathering potential of their own may instead enhance the uptake of mineral nutrients using their high-affinity ion transporter systems.IMPORTANCE In this study, we revealed the molecular mechanism and possible strategies of A. pantherina with weak weathering potential in the uptake of insoluble mineral nutrients by using transcriptome sequencing (RNA-seq) technology and found that ApHAK1, a K transporter gene of this fungus, plays a very important role in the acquisition of K and P. Ectomycorrhizal (ECM) fungi play critical roles in the uptake of woody plant nutrients in forests that are usually characterized by nutrient limitation and in maintaining the stability of forest ecosystems. However, the regulatory mechanisms of ECM fungi in acquiring nutrients from minerals/rocks are poorly understood. This study investigated the transcriptional regulation of A. pantherina weathering K-containing feldspar and apatite and improves the understanding of fungal-plant interactions in promoting plant nutrition enabling increased productivity in sustainable forestry.

DOI: 10.1128/AEM.00719-19
PubMed: 31126945
PubMed Central: PMC6643233


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome Analysis Provides Novel Insights into the Capacity of the Ectomycorrhizal Fungus
<i>Amanita pantherina</i>
To Weather K-Containing Feldspar and Apatite.</title>
<author>
<name sortKey="Sun, Qibiao" sort="Sun, Qibiao" uniqKey="Sun Q" first="Qibiao" last="Sun">Qibiao Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fu, Ziyu" sort="Fu, Ziyu" uniqKey="Fu Z" first="Ziyu" last="Fu">Ziyu Fu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Finlay, Roger" sort="Finlay, Roger" uniqKey="Finlay R" first="Roger" last="Finlay">Roger Finlay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lian, Bin" sort="Lian, Bin" uniqKey="Lian B" first="Bin" last="Lian">Bin Lian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China bin2368@vip.163.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31126945</idno>
<idno type="pmid">31126945</idno>
<idno type="doi">10.1128/AEM.00719-19</idno>
<idno type="pmc">PMC6643233</idno>
<idno type="wicri:Area/Main/Corpus">000066</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000066</idno>
<idno type="wicri:Area/Main/Curation">000066</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000066</idno>
<idno type="wicri:Area/Main/Exploration">000066</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome Analysis Provides Novel Insights into the Capacity of the Ectomycorrhizal Fungus
<i>Amanita pantherina</i>
To Weather K-Containing Feldspar and Apatite.</title>
<author>
<name sortKey="Sun, Qibiao" sort="Sun, Qibiao" uniqKey="Sun Q" first="Qibiao" last="Sun">Qibiao Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fu, Ziyu" sort="Fu, Ziyu" uniqKey="Fu Z" first="Ziyu" last="Fu">Ziyu Fu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Finlay, Roger" sort="Finlay, Roger" uniqKey="Finlay R" first="Roger" last="Finlay">Roger Finlay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lian, Bin" sort="Lian, Bin" uniqKey="Lian B" first="Bin" last="Lian">Bin Lian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China bin2368@vip.163.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminum Silicates (metabolism)</term>
<term>Amanita (genetics)</term>
<term>Amanita (metabolism)</term>
<term>Apatites (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Potassium (metabolism)</term>
<term>Potassium Compounds (metabolism)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amanita (génétique)</term>
<term>Amanita (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Apatites (métabolisme)</term>
<term>Composés du potassium (métabolisme)</term>
<term>Mycorhizes (génétique)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Potassium (métabolisme)</term>
<term>Silicates d'aluminium (métabolisme)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aluminum Silicates</term>
<term>Apatites</term>
<term>Potassium</term>
<term>Potassium Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amanita</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Amanita</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Amanita</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Amanita</term>
<term>Apatites</term>
<term>Composés du potassium</term>
<term>Mycorhizes</term>
<term>Potassium</term>
<term>Silicates d'aluminium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ectomycorrhizal (ECM) fungi, symbiotically associated with woody plants, markedly improve the uptake of mineral nutrients such as potassium (K) and phosphorus (P) by their host trees. Although it is well known that ECM fungi can obtain K and P from soil minerals through biological weathering, the mechanisms regulating this process are still poorly understood at the molecular level. Here, we investigated the transcriptional regulation of the ECM fungus
<i>Amanita pantherina</i>
in weathering K-containing feldspar and apatite using transcriptome sequencing (RNA-seq) and validated these results for differentially expressed genes using real-time quantitative PCR. The results showed that
<i>A. pantherina</i>
was able to improve relevant metabolic processes, such as promoting the biosynthesis of unsaturated fatty acids and steroids in the weathering of K-containing feldspar and apatite. The expression of genes encoding ion transporters was markedly enhanced during exposure to solid K-containing feldspar and apatite, and transcripts of the high-affinity K transporter ApHAK1, belonging to the HAK family, were significantly upregulated. The results also demonstrated that there was no upregulation of organic acid biosynthesis, reflecting the weak weathering capacity of the
<i>A. pantherina</i>
isolate used in this study, especially its inability to utilize P in apatite. Our findings suggest that under natural conditions in forests, some ECM fungi with low weathering potential of their own may instead enhance the uptake of mineral nutrients using their high-affinity ion transporter systems.
<b>IMPORTANCE</b>
In this study, we revealed the molecular mechanism and possible strategies of
<i>A. pantherina</i>
with weak weathering potential in the uptake of insoluble mineral nutrients by using transcriptome sequencing (RNA-seq) technology and found that
<i>ApHAK1</i>
, a K transporter gene of this fungus, plays a very important role in the acquisition of K and P. Ectomycorrhizal (ECM) fungi play critical roles in the uptake of woody plant nutrients in forests that are usually characterized by nutrient limitation and in maintaining the stability of forest ecosystems. However, the regulatory mechanisms of ECM fungi in acquiring nutrients from minerals/rocks are poorly understood. This study investigated the transcriptional regulation of
<i>A. pantherina</i>
weathering K-containing feldspar and apatite and improves the understanding of fungal-plant interactions in promoting plant nutrition enabling increased productivity in sustainable forestry.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31126945</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>85</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome Analysis Provides Novel Insights into the Capacity of the Ectomycorrhizal Fungus
<i>Amanita pantherina</i>
To Weather K-Containing Feldspar and Apatite.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00719-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00719-19</ELocationID>
<Abstract>
<AbstractText>Ectomycorrhizal (ECM) fungi, symbiotically associated with woody plants, markedly improve the uptake of mineral nutrients such as potassium (K) and phosphorus (P) by their host trees. Although it is well known that ECM fungi can obtain K and P from soil minerals through biological weathering, the mechanisms regulating this process are still poorly understood at the molecular level. Here, we investigated the transcriptional regulation of the ECM fungus
<i>Amanita pantherina</i>
in weathering K-containing feldspar and apatite using transcriptome sequencing (RNA-seq) and validated these results for differentially expressed genes using real-time quantitative PCR. The results showed that
<i>A. pantherina</i>
was able to improve relevant metabolic processes, such as promoting the biosynthesis of unsaturated fatty acids and steroids in the weathering of K-containing feldspar and apatite. The expression of genes encoding ion transporters was markedly enhanced during exposure to solid K-containing feldspar and apatite, and transcripts of the high-affinity K transporter ApHAK1, belonging to the HAK family, were significantly upregulated. The results also demonstrated that there was no upregulation of organic acid biosynthesis, reflecting the weak weathering capacity of the
<i>A. pantherina</i>
isolate used in this study, especially its inability to utilize P in apatite. Our findings suggest that under natural conditions in forests, some ECM fungi with low weathering potential of their own may instead enhance the uptake of mineral nutrients using their high-affinity ion transporter systems.
<b>IMPORTANCE</b>
In this study, we revealed the molecular mechanism and possible strategies of
<i>A. pantherina</i>
with weak weathering potential in the uptake of insoluble mineral nutrients by using transcriptome sequencing (RNA-seq) technology and found that
<i>ApHAK1</i>
, a K transporter gene of this fungus, plays a very important role in the acquisition of K and P. Ectomycorrhizal (ECM) fungi play critical roles in the uptake of woody plant nutrients in forests that are usually characterized by nutrient limitation and in maintaining the stability of forest ecosystems. However, the regulatory mechanisms of ECM fungi in acquiring nutrients from minerals/rocks are poorly understood. This study investigated the transcriptional regulation of
<i>A. pantherina</i>
weathering K-containing feldspar and apatite and improves the understanding of fungal-plant interactions in promoting plant nutrition enabling increased productivity in sustainable forestry.</AbstractText>
<CopyrightInformation>Copyright © 2019 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Qibiao</ForeName>
<Initials>Q</Initials>
<Identifier Source="ORCID">0000-0003-4804-120X</Identifier>
<AffiliationInfo>
<Affiliation>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Ziyu</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Finlay</LastName>
<ForeName>Roger</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0002-3652-2930</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lian</LastName>
<ForeName>Bin</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0002-7150-1166</Identifier>
<AffiliationInfo>
<Affiliation>Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China bin2368@vip.163.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000538">Aluminum Silicates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001031">Apatites</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017680">Potassium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>12168-80-8</RegistryNumber>
<NameOfSubstance UI="C016447">feldspar</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000538" MajorTopicYN="N">Aluminum Silicates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000545" MajorTopicYN="N">Amanita</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001031" MajorTopicYN="N">Apatites</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017680" MajorTopicYN="N">Potassium Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">RNA-seq</Keyword>
<Keyword MajorTopicYN="Y">ectomycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="Y">high-affinity ion transporter</Keyword>
<Keyword MajorTopicYN="Y">mineral weathering</Keyword>
<Keyword MajorTopicYN="Y">molecular mechanism</Keyword>
<Keyword MajorTopicYN="Y">real-time quantitative PCR</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31126945</ArticleId>
<ArticleId IdType="pii">AEM.00719-19</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00719-19</ArticleId>
<ArticleId IdType="pmc">PMC6643233</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 1999 Jan;31(2):511-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10027968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1999 Oct;28(1):21-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10512669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Mar 10;1469(1):1-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Aug;37(3):671-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Sep 28;407(6803):506-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11029000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2001 May 1;16(5):248-254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11301154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):365-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Mar 22;19(5):651-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2003 Sep 11;4:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12969510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Mar;15(2):143-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15221578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):317-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2005 Mar-Apr;97(2):295-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16396336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(4):805-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):82-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17078984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2007 Jun;20(3-4):379-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17235665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(3):611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17244056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 May;73(9):3019-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 7;282(36):26057-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17626012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Mar;57(6):1092-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Apr;20(4):217-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20191371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):292-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Oct;35(10):565-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20451393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jul;76(14):4780-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20511429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Sep;30(9):1129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20631011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2011 Apr-May;115(4-5):351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21530917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e30619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22312429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Geobiology. 2012 Sep;10(5):445-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22624799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2012 Sep;66(9):2961-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22946816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Nov;23(8):597-625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23572325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Feb;201(3):951-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24279702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2014 May-Jun;118(5-6):453-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24863474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jul 17;5:337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25101097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jan 13;5:7733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2015 Apr;47(4):410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25706625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2016 Apr;72(4):410-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26693724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jul 20;6:29733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27435342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Nov;21(11):937-950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27514454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Dec;220(4):1047-1058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29888395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Aug 3;8(1):11672</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30076360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):29-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847135</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Oman</li>
<li>République populaire de Chine</li>
<li>Suède</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Sun, Qibiao" sort="Sun, Qibiao" uniqKey="Sun Q" first="Qibiao" last="Sun">Qibiao Sun</name>
</noRegion>
<name sortKey="Fu, Ziyu" sort="Fu, Ziyu" uniqKey="Fu Z" first="Ziyu" last="Fu">Ziyu Fu</name>
</country>
<country name="Suède">
<noRegion>
<name sortKey="Finlay, Roger" sort="Finlay, Roger" uniqKey="Finlay R" first="Roger" last="Finlay">Roger Finlay</name>
</noRegion>
</country>
<country name="Oman">
<noRegion>
<name sortKey="Lian, Bin" sort="Lian, Bin" uniqKey="Lian B" first="Bin" last="Lian">Bin Lian</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000053 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000053 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31126945
   |texte=   Transcriptome Analysis Provides Novel Insights into the Capacity of the Ectomycorrhizal Fungus Amanita pantherina To Weather K-Containing Feldspar and Apatite.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31126945" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020